Assessing the Impact of Spectral Resolution on Classification of Lowland Native Grassland Communities Based on Field Spectroscopy in Tasmania, Australia
نویسندگان
چکیده
This paper presents a case study for the analysis of endangered lowland native grassland communities in the Tasmanian Midlands region using field spectroscopy and spectral convolution techniques. The aim of the study was to determine whether there was significant improvement in classification accuracy for lowland native grasslands and other vegetation communities based on hyperspectral resolution datasets over multispectral equivalents. A spectral dataset was collected using an ASD Handheld-2 spectroradiometer at Tunbridge Township Lagoon. The study then employed a k-fold cross-validation approach for repeated classification of a full hyperspectral dataset, a reduced hyperspectral dataset, and two convoluted multispectral datasets. Classification was performed on each of the four datasets a total of 30 times, based on two different class configurations. The classes analysed were Themeda triandra grassland, Danthonia/Poa grassland, Wilsonia rotundifolia/Selliera radicans, saltpan, and a simplified C3 vegetation class. The results of the classifications were then tested for statistically significant differences using ANOVA and Tukey’s post-hoc comparisons. The results of the study indicated that hyperspectral resolution provides small but statistically significant increases in classification accuracy for Themeda and Danthonia grasslands. For other classes, differences in classification accuracy for all datasets were not statistically significant. The results obtained here indicate that there is some potential for enhanced detection of major lowland native grassland community types using hyperspectral resolution datasets, and that future analysis should prioritise good performance in these classes over others. This study presents a method for identification of optimal spectral resolution across multiple datasets, and constitutes an important case study for lowland native grassland mapping in Tasmania.
منابع مشابه
Noah’s Ark Conservation Will Not Preserve Threatened Ecological Communities under Climate Change
BACKGROUND Effective conservation of threatened ecological communities requires knowledge of where climatically suitable habitat is likely to persist into the future. We use the critically endangered Lowland Grassland community of Tasmania, Australia as a case study to identify options for management in cases where future climatic conditions become unsuitable for the current threatened communit...
متن کاملThe Embedded Health Management Academic: A Boundary Spanning Role for Enabling Knowledge Translation; Comment on “CIHR Health System Impact Fellows: Reflections on ‘Driving Change’ Within the Health System”
Healthcare organisations are looking at strategies and activities to improve patient outcomes, beyond clinical interventions. Increasingly, health organisations are investing significant resources in leadership, management and team work training to optimise professional collaboration, shared decision-making and, by extension, high quality services. Embedded clinical aca...
متن کاملEffects of Topographical Factors on Distribution of Plant Communities in Semi-Steppe Grasslands (Case Study: Ghorkhud Region, Northern Khorasan Province, Iran)
Abstract. The purpose of this study was to investigate the effects of topographical factors on the classification of grassland plant communities in the rangelands of Ghorkhud, Northern Khorasan Province, Iran. For sampling, land units were specified. A floristic list was prepared using minimal area method based on the nested plot (Braun-Blanquet method). 116 10m2 furrows were selected. Within e...
متن کاملAutomatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems
With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 10 شماره
صفحات -
تاریخ انتشار 2018